先进制造业知识服务平台
国家科技图书文献中心机械分馆 工信部产业技术基础公共服务平台 国家中小企业公共服务示范平台
主页
外文期刊
OA 期刊
电子期刊
外文会议
中文期刊
标准
网络数据库
专业机构
企业门户
起重机械
生产工程
高级检索
关于我们
版权声明
使用帮助
Maximizing margins and optimizing operational conditions for residue fluid catalytic cracking with an artificial intelligence hybrid reaction model
参考中译:基于人工智能混合反应模型的渣油催化裂化边际最大化及操作条件优化
     
  
  
刊名:
Journal of Advanced Manufacturing and Processing
作者:
Eiji Kawai
(Refinery, Petrochemical & New Energy Process Engineering Department, Technological & Engineering Division, Chiyoda Corporation)
Hideki Sato
(Digital Products Department, Digital Transformation Division, Chiyoda Corporation)
Kazuya Furuichi
(Digital Products Department, Digital Transformation Division, Chiyoda Corporation)
Takatsuka Toru
(Refinery, Petrochemical & New Energy Process Engineering Department, Technological & Engineering Division, Chiyoda Corporation)
Toshio Yoshioka
(Digital Products Department, Digital Transformation Division, Chiyoda Corporation)
刊号:
810B0157/I
出版年:
2022
年卷期:
2022, vol.4, no.3
页码:
10118-1--10118-20
总页数:
20
分类号:
TQ
关键词:
AI
;
Deactivation
;
Lump model
;
Machine learning
;
Optimization
;
RFCC
参考中译:
人工智能;停用;集总模型;机器学习;优化;RFCC
语种:
eng
文摘:
Because of the recent declining demand for gasoline, the key to making refineries competitive is to maximize the yields of propylene and aromatics by converting heavier feedstock into basic petrochemicals through the residue fluid catalytic cracking (RFCC) process. This study presents an artificial intelligence (AI) hybrid reaction model to optimize the catalyst make-up rate and maximize the product yield in a real-time operation by (1) developing a catalyst activity evaluation method, (2) integrating the catalyst to oil (Cat/Oil) ratio to evaluate the reaction performance, and (3) incorporating the yield prediction model into the latest digital technologies. To this end, the catalyst deactivation function, which uses a deep neural network of the basic machine learning method, was added to the past RFCC reaction model. Under actual operational conditions, this study shows that the AI hybrid reaction model using the catalyst deactivation function can minimize catalyst loss and produce an accurate yield prediction as a production planning support tool.
参考中译:
由于最近对汽油的需求下降,使炼油厂具有竞争力的关键是通过渣油催化裂化(RFCC)工艺将更重的原料转化为基础石化产品,从而最大限度地提高丙烯和芳烃的产量。本研究提出了一种人工智能(AI)混合反应模型,通过(1)开发一种催化剂活性评价方法,(2)结合催化剂与油(Cat/Oil)的比例来评价反应性能,以及(3)将产率预测模型融入最新的数字技术中,从而在实时操作中优化催化剂的补充率并最大化产品收率。为此,在过去的重油催化裂化反应模型中加入了催化剂失活函数,该函数采用了深度神经网络的基本机器学习方法。在实际操作条件下,本研究表明,使用催化剂失活函数的AI混合反应模型可以最大限度地减少催化剂损失,并产生准确的产率预测,作为生产计划的支持工具。
相关文献:
Dynamic replanning in uncertain environments for a sewer inspection robot
WEB SERVICE COMPOSITION AS A COMPOSITION OF VALID AND ROBUST SEMANTIC LINKS
Commonsense-Based Topic Modeling
ARGUMENTATION AND CP-BOOLEAN GAMES
PATH PLANNING FOR RACING GAMES
DESCRIPTIONS AS CONSTRAINTS IN OBJECT-ORIENTED REPRESENTATION
ARI: A PROBLEM SOLVER THAT PLANS HOW TO MACHINE MECHANICAL PARTS
MORE EXPRESSIVE PLANNING GRAPH EXTENSION
An optimization of the structure of databases
A Self-Developing Fuzzy Expert System, Designed for Optimization of Machining Process
国家科技图书文献中心
全球文献资源网
京ICP备05055788号-26
京公网安备11010202008970号 机械工业信息研究院 2018-2024