先进制造业知识服务平台
国家科技图书文献中心机械分馆 工信部产业技术基础公共服务平台 国家中小企业公共服务示范平台
主页
外文期刊
OA 期刊
电子期刊
外文会议
中文期刊
标准
网络数据库
专业机构
企业门户
起重机械
生产工程
高级检索
关于我们
版权声明
使用帮助
Development of artificial intelligence based model for the prediction of Young's modulus of polymer/carbon-nanotubes composites
参考中译:基于人工智能的聚合物/碳纳米管复合材料杨氏模数预测模型的建立
     
  
  
刊名:
Mechanics of Advanced Materials and Structures
作者:
Nang Xuan Ho
(Faculty of Vehicle and Energy Engineering, PHENIKAA University)
Tien-Thinh Le
(PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC)
Minh Vuong Le
(Laboratoire Modelisation et Simulation Multi Echelle, Universite Paris-Est)
刊号:
712C0115
ISSN:
1537-6494
出版年:
2022
年卷期:
2022, vol.29, no.27
页码:
5965-5978
总页数:
14
分类号:
TB33
关键词:
AI
;
ML
;
Nanocomposites
;
Neural network
;
Polymer
;
Composite properties
参考中译:
人工智能;ML;纳米复合材料;神经网络;聚合物;复合材料性能
语种:
eng
文摘:
In this paper, an Artificial Intelligence (AI) model is constructed for the behavior prediction, i.e. Young's modulus, of polymer/carbon-nanotube (CNTs) composites. The AI is proposed to overcome the difficulties when studying the properties of novel composite materials, for example the time-consuming of experimental studies of resource-consuming of other numerical methods. Artificial Neural Network (ANN) model was chosen and optimized in architecture based on a parametric study. The main objective of this study is to firstly confirm that the proposed AI method performs well for nanocomposites and it can then be optimized in terms of computational time and resources in further studies. The obtained results have shown that the proposed model exhibits great performance in both training and testing phases, where the correlation coefficient is 0.986 for training part and 0.978 for the testing part.
参考中译:
建立了聚合物/碳纳米管复合材料行为预测的人工智能模型,即杨氏S模数。人工智能的提出是为了克服研究新型复合材料性能的困难,例如其他数值方法的实验研究耗费资源的耗时。在参数研究的基础上,选择了人工神经网络(ANN)模型,并对其进行了优化。这项研究的主要目的是首先确认所提出的人工智能方法对纳米复合材料具有很好的性能,然后在进一步的研究中可以在计算时间和资源方面进行优化。结果表明,该模型在训练阶段和测试阶段都表现出了良好的性能,训练阶段的相关系数为0.986,测试阶段的相关系数为0.978。
相关文献:
Dynamic replanning in uncertain environments for a sewer inspection robot
WEB SERVICE COMPOSITION AS A COMPOSITION OF VALID AND ROBUST SEMANTIC LINKS
Commonsense-Based Topic Modeling
ARGUMENTATION AND CP-BOOLEAN GAMES
PATH PLANNING FOR RACING GAMES
DESCRIPTIONS AS CONSTRAINTS IN OBJECT-ORIENTED REPRESENTATION
ARI: A PROBLEM SOLVER THAT PLANS HOW TO MACHINE MECHANICAL PARTS
MORE EXPRESSIVE PLANNING GRAPH EXTENSION
An optimization of the structure of databases
A Self-Developing Fuzzy Expert System, Designed for Optimization of Machining Process
国家科技图书文献中心
全球文献资源网
京ICP备05055788号-26
京公网安备11010202008970号 机械工业信息研究院 2018-2024