先进制造业知识服务平台
国家科技图书文献中心机械分馆  工信部产业技术基础公共服务平台  国家中小企业公共服务示范平台

An optimal and efficient hierarchical motion planner for industrial robots with complex constraints
参考中译:针对具有复杂约束的工业机器人的优化高效分层运动规划器


          

刊名:Computers and Electrical Engineering
作者:Longfei Zhang(School of Automation, Central South University)
Zeyang Yin(School of Automation, Central South University)
Xiaofang Chen(School of Automation, Central South University)
Yongfang Xie(School of Automation, Central South University)
刊号:738C0073
ISSN:0045-7906
出版年:2024
年卷期:2024, vol.119, no.Pt.B
页码:109521-1--109521-17
总页数:17
分类号:TP39
关键词:Industrial robotsMotion planningReinforcement learningHierarchical frameworkOptimal trajectory
参考中译:工业机器人;运动规划;强化学习;分层框架;最佳轨迹
语种:eng
文摘:This paper investigates the motion planning problem for industrial robots with complex constraints. An optimal and efficient hierarchical motion planner is proposed to obtain high-quality trajectories with low computational effort. First, the motion planning problem is formulated as an optimal control problem incorporating robot kinematics, obstacle-avoidance, and dynamics constraints. Thereafter, a hierarchical framework is constructed within the Markov decision process, consisting of two planners. In the high-level planner, a reinforcement learning-based policy is employed to generate virtual targets for the robot to navigate around obstacles, which can avoid collision detection. Then, in the low-level planner, a global orthogonal collocation method is used to generate time-energy optimal trajectories, considering dynamics, path, and boundary constraints such as joint position, velocity, and torque. Finally, simulation results on a 6-DOF (degree of freedom) and a 7-DOF industrial robot validate that the proposed method can produce high-quality trajectories with improved success rates and computation times compared to existing works.
参考中译:研究具有复杂约束的工业机器人的运动规划问题。提出了一种优化、高效的分层运动规划器,以低计算量获得高质量的轨迹。首先,将运动规划问题表述为一个结合机器人运动学、障碍物回避和动力学约束的最优控制问题。此后,在马尔科夫决策过程中构建了一个由两个规划者组成的分层框架。在高层规划器中,采用基于强化学习的策略生成虚拟目标,供机器人绕过障碍物导航,从而避免碰撞检测。然后,在低级规划器中,使用全局垂直配置方法来生成时间-能量最优轨迹,同时考虑动力学、路径和边界约束(例如关节位置、速度和扭矩)。最后,对6-DOF(自由度)和7-DOF工业机器人的仿真结果验证了所提出的方法可以生成高质量的轨迹,与现有作品相比,成功率和计算时间有所提高。